Tetrahedron Letters 50 (2009) 2949-2951

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

β-Nitrostyrenes as electrophiles in Parham cyclization chemistry: reaction with *o*-lithiobenzonitrile

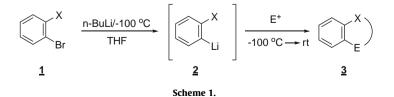
Adam J. Clarke, David A. Hunt*

Department of Chemistry, The College of New Jersey, PO Box 7718, Ewing, NJ 08628-7718, USA

ARTICLE INFO

Article history: Received 4 March 2009 Revised 27 March 2009 Accepted 31 March 2009 Available online 5 April 2009

ABSTRACT

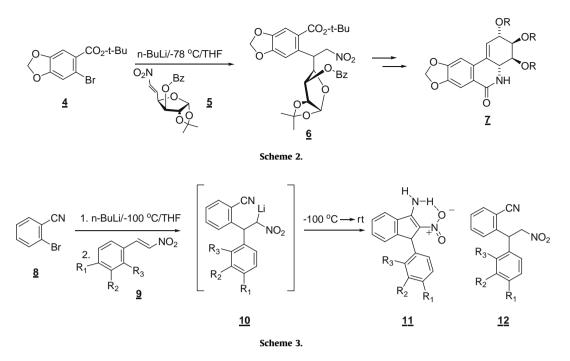

 β -Nitrostyrenes react with *o*-lithiobenzonitrile, generated from the requisite aryl bromide at -100 °C by bromine–lithium exchange with *n*-butyllithium in THF, to afford 2-nitro-3-phenyl-3*H*-inden-1-ylamines resulting from 1,4-addition to the β -nitrostyrene followed by intramolecular capture of the resultant nitronate anion by the *ortho*-cyano functional group.

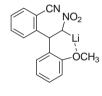
© 2009 Elsevier Ltd. All rights reserved.

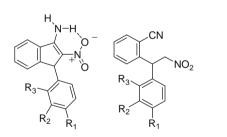
The construction of benzo-fused polycyclic carbocycles and heterocycles via low-temperature reaction of aryllithium reagents containing electrophilic ortho-substituted functional groups, a method known as the Parham cyclization, was developed three decades ago and has been widely accepted as a powerful tool for organic synthesis.¹ A sampling of electrophilic functional groups used in these reactions as external electrophiles includes ketones,² aldehydes,³ nitriles,⁴ imines,⁵ isocyanates,⁶ and anhydrides (Scheme 1).⁷

Reactions of β -nitrostyrenes and other nitroalkenes as Michael acceptors with a variety of organometallic reagents have been well documented.⁸ More recently, the ability of β -nitrostyrenes and nitroalkenes to undergo conjugate additions with organolithium reagents has been utilized as a key carbon–carbon bond-forming step in the synthesis of a variety of cyclic ring systems.⁹ Paulson and Stubbe described the first known reaction of a Parham-type substrate (the bromine–lithium-exchanged intermediate of **4**) with nitroalkene **5** as a Michael acceptor in the key step toward the construction of a ring system in the total synthesis of (+)-lycoricidine (**7**) (Scheme 2).¹⁰

We wish to report the first example of the reaction of an ortho-cyano-functionalized aryllithium reagent with a β-nitrostyrene and concomitant intramolecular capture of the resultant lithium nitronate to afford cyclized products, 2-nitro-3-phenyl-3H-inden-1-ylamines, in a single-pot procedure. The halogenlithium exchange chemistry of the substrate chosen for this study, 2-bromobenzonitrile (8), has been well documented.⁴ Thus, reaction of 2-bromobenzonitrile with *n*-butyllithium in THF under nitrogen at -95 to -100 °C generates the corresponding aryllithium which is then quenched with the β-nitrostyrene 9 followed by warming to room temperature (Scheme 3). Workup provides the 2-nitro-3-aryl-3H-inden-1-ylamines **11** in moderate-good yields (Table 1).¹¹ Using 2-methoxy-βnitrostyrene as the electrophile in the reaction sequence resulted in the formation of **12d** as a minor by-product along with **11d**. A possible rationale for this observation may be related to the stability of the methoxy-chelated intermediate 10d (Fig. 1). At any rate, the uncyclized Michael adduct 12 can be isolated as the major product upon low temperature quenching with CH₃OH.¹² The ¹H NMR spectra of inden-1-ylamines




^{*} Corresponding author. Tel.: +1 609 771 3174; fax: +1 609 637 5157. *E-mail address*: hunt@tcnj.edu (D.A. Hunt).


^{0040-4039/\$ -} see front matter @ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.03.217

	<u>11</u>		<u>12</u>		
Compound	R ₁	R ₂	R ₃	Yield (%) 11	Yield (%) 12
9a	Н	Н	Н	61	
9b	OCH ₃	Н	Н	52	
9c	Н	OCH ₃	Н	52	
9d	Н	Н	OCH ₃	39	19
9e	Н	Н	CH ₃	56	
9f	Н	C_2H_5	Н	54	
9e	Н	Н	CH_3		46
9d	Н	Н	OCH_3		41

11a–d reveal two –NH protons which are non-equivalent, presumably due to intramolecular hydrogen bonding of the enamino protons with the adjacent nitro group.¹³ Future work will address the scope and limitations of Michael addition chemistry of β -nitrostyrenes with other Parham substrates and applications to total synthesis.

Acknowledgments

We wish to thank The College of New Jersey for their generous support of this work.

References and notes

- (a) Parham, W. E.; Bradsher, C. K. Acc. Chem. Res. **1982**, *15*, 300–305; (b) Clayden, J. Organolithiums: Selectivity for Synthesis; Pergamon: New York, 2002. Chapter 7, pp. 282–329; (c) Sotomayor, N.; Lete, E. Curr. Org. Chem. **2003**, *7*, 275–300; (d) El Sheikh, S.; Schmalz, H.-Z. Curr. Opin. Drug Discovery Dev. **2004**, *7*, 882–895.
- Parham, W. E.; Egberg, D. C.; Sayed, Y. A.; Thraikill, R. W.; Keyser, G. E.; Neu, M.; Montgomery, W. C.; Jones, L. D. J. Org. Chem. **1976**, *41*, 2628–2633.
- 3. Bradsher, C. K.; Hunt, D. A. J. Org. Chem. 1980, 45, 4248-4250.
- 4. Parham, W. E.; Jones, L. D. J. Org. Chem. 1976, 41, 1187-1191.
- (a) Bradsher, C. K.; Hunt, D. A. J. Org. Chem. **1981**, 46, 327–330; (b) Campbell, J. B.; Dedinas, R. F.; Trumbower-Walsh, S. A. J. Org. Chem. **1996**, 61, 6205.
- 6. Parham, W. E.; Jones, L. D. J. Org. Chem. 1976, 41, 2704-2706
- 7. Parham, W. E.; Piccirilli, R. M. J. Org. Chem. 1976, 41, 1268-1269.
- (a) Seebach, D.; Leitz, H. F. Agnew. Chem., Intl. Ed. Engl. 1969, 8, 983; (b) Knochel, P.; Seebach, D. Tetrahedron Lett. 1981, 22, 3223–3226; (c) Yao, C-F.; Kao, K-H.; Liu, J-T.; Chu, C.-M.; Wang, Y.; Chen, W.-C.; Lin, Y.-M.; Yan, M.-C.; Liu, J.-Y.; Chuang, M.-C.; Shiue, J.-L. Tetrahedron 1998, 54, 791–822; (d) Valleix, F.; Nagai, K.; Soeta, T.; Kuriyama, M.; Yamada, K.; Tomioka, K. Tetrahedron 2005, 61, 7420–7424.
- For examples, see: (a) Michaelides, M. R.; Hong, Y.; DiDomenico, S.; Bayburt, E. K.; Asin, K. E.; Britton, D. R.; Lin, C. W.; Shiosaki, K. J. Med. Chem. 1997, 40, 1585– 1599; (b) Yasuhara, T.; Nishimura, K.; Yamashita, M.; Fukuyama, N.; Yamada, K.; Muraoka, O.; Tomioka, K. Org. Lett. 2003, 5, 1123–1126.
- 10. Paulsen, H.; Stubbe, MK. Tetrahedron Lett. 1982, 23, 3171-3174.
- 11. General procedure illustrated by the preparation of 11a: To a solution of 2bromobenzonitrile (1.00 g; 5.49 mmol) in dry THF (25 mL) under N_2 at -100 °C, 1.1 equiv of *n*-butyllithium (3.92 mL; 1.4 M in hexane; 5.49 mmol) was added at such a rate that a strong exotherm was not produced. After stirring for 30 min at -95 to -100 °C, a solution of the nitrostyrene **9a** (.819 g; 5.49 mmol in 5 mL THF) was added in the same fashion. Upon completion of the addition, the reaction was maintained at $-100\ ^\circ C$ for 30 min, then allowed to warm to room temperature and stirred overnight. The mixture was then poured into water and extracted with CH_2Cl_2 (3×35 mL). The combined organics were dried (MgSO₄), filtered, and concentrated. The crude product was purified by recrystallization from EtOAc to afford 2-nitro-1-phenyl-1Hinden-3-amine (**11a**) as a pale yellow amorphous solid, yield = 0.840 mg (61%); mp 211–215 °C (dec); IR: 3360, 3128, 1649, 1459, 1376 cm⁻¹; ¹H NMR (DMSOd₆, 300 MHz): δ 5.18 s, 1, benzylic CH), 7.19–7.34 m, 6, ArH), 7.49–7.54 (m, 2, ArH), 8.10-8.11 (m, 1, ArH), 8.44 (br s, 1, NH), 8.72 (br s, 1, NH); ¹³C NMR (DMSO-d₆, 75 MHz) & 51.00, 122.18, 125.34, 126.91, 127.56, 127.90, 128.58, 132.06, 140.03, 205.44. Anal. Calcd for C₁₅H₁₂N₂O₂ 1:8 H₂O:C, 70.80; H, 4.82; N, 11.01. Found: C, 70.72; H, 4.58; N, 10.64.

12. General procedure illustrated by the preparation of 12d: To a solution of 2-bromobenzonitrile (1.00 g; 5.49 mmol) in dry THF (25 mL) under N₂ at −100 °C, 1.1 equiv of *n*-butyllithium (3.92 mL; 1.4 M in hexane; 5.49 mmol) was added at such a rate that a strong exotherm was not produced. After stirring for 30 min at −95 to −100 °C, a solution of the nitrostyrene 9c (.819 g; 5.49 mmol in 5 mL THF) was added in the same fashion. Upon completion of the addition, the reaction was maintained at −100 °C for 15 min, then poured into CH₃OH (35 mL) and stirred overnight. The mixture was diluted with water and extracted with CH₂Cl₂ (3 × 35 mL). The combined organics were dried (MgSO₄), filtered, and concentrated, and the crude product was purified by

flash chromatography on silica gel (1:1 hexanes/EtOAc) to afford 2-(1-(2-methoxyphenyl)-2-nitroethyl)benzonitrile (**12d**) as a fluffy off-white solid, yield = 0.635 mg (41%); mp 121–121.3 °C; IR: 2226, 1490, 1377 cm⁻¹; ¹H NMR (DMSO-*d₆*, 300 MH2); δ 3.86 s, 3, OCH₃), 5.34 dd, 2, diastereotopic CH₂), 5.67 (t, 1, benzylic CH), 6.95–7.03 (m, 2, ArH), 7.27–7.32 (m, 2, ArH), 7.45–7.48 (m, 1, ArH); 7.66–7.78 (m, 3, ArH); ¹³C NMR (DMSO-*d₆*, 75 MHz) δ 41.26, 55.12, 76.66, 111.34, 113.64, 117.37, 120.75, 126.43, 127.84, 128.04, 128.49, 129.32, 133.10, 133.51, 143.00, 157.19 Anal. Calcd for C₁₆H₁₄N₂O₃ 1/8 H₂O: C,67.55; H, 4.93; N, 9.85. Found: C, 67.36; H, 4.71; N, 9.73.

13. Rajappa, S. Tetrahedron 1999, 55, 7065-7114.